3.3.4 \(\int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \sec (c+d x))^2} \, dx\) [204]

Optimal. Leaf size=77 \[ \frac {\sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}+\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2} \]

[Out]

1/3*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^2+1/3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellip
ticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/d

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3900, 21, 3856, 2720} \begin {gather*} \frac {\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(3/2)/(a + a*Sec[c + d*x])^2,x]

[Out]

(Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a^2*d) + (Sec[c + d*x]^(3/2)*Sin[c + d*x]
)/(3*d*(a + a*Sec[c + d*x])^2)

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3900

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[b*d*Co
t[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(a*f*(2*m + 1))), x] - Dist[d/(a*b*(2*m + 1)), Int
[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*(a*(n - 1) - b*(m + n)*Csc[e + f*x]), x], x] /; FreeQ[{
a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[m])

Rubi steps

\begin {align*} \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \sec (c+d x))^2} \, dx &=\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {\int \frac {\sqrt {\sec (c+d x)} \left (\frac {a}{2}+\frac {1}{2} a \sec (c+d x)\right )}{a+a \sec (c+d x)} \, dx}{3 a^2}\\ &=\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {\int \sqrt {\sec (c+d x)} \, dx}{6 a^2}\\ &=\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a^2}\\ &=\frac {\sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}+\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.36, size = 98, normalized size = 1.27 \begin {gather*} \frac {\cos \left (\frac {1}{2} (c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x) \left (4 \cos ^3\left (\frac {1}{2} (c+d x)\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )-\sin \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {3}{2} (c+d x)\right )\right )}{3 a^2 d (1+\sec (c+d x))^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^(3/2)/(a + a*Sec[c + d*x])^2,x]

[Out]

(Cos[(c + d*x)/2]*Sec[c + d*x]^(5/2)*(4*Cos[(c + d*x)/2]^3*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] - Sin[
(c + d*x)/2] + Sin[(3*(c + d*x))/2]))/(3*a^2*d*(1 + Sec[c + d*x])^2)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(187\) vs. \(2(93)=186\).
time = 0.06, size = 188, normalized size = 2.44

method result size
default \(-\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-3 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(188\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

-1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1
/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+2*cos(1/2*d*x+1/2*c)^4-3*cos(1/2*d
*x+1/2*c)^2+1)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c
)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^(3/2)/(a*sec(d*x + c) + a)^2, x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.55, size = 150, normalized size = 1.95 \begin {gather*} \frac {{\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 2 \, \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

1/6*((-I*sqrt(2)*cos(d*x + c)^2 - 2*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c
) + I*sin(d*x + c)) + (I*sqrt(2)*cos(d*x + c)^2 + 2*I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassPInverse(-4
, 0, cos(d*x + c) - I*sin(d*x + c)) + 2*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d
*x + c) + a^2*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {\sec ^{\frac {3}{2}}{\left (c + d x \right )}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec {\left (c + d x \right )} + 1}\, dx}{a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(3/2)/(a+a*sec(d*x+c))**2,x)

[Out]

Integral(sec(c + d*x)**(3/2)/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1), x)/a**2

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(3/2)/(a*sec(d*x + c) + a)^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(3/2)/(a + a/cos(c + d*x))^2,x)

[Out]

int((1/cos(c + d*x))^(3/2)/(a + a/cos(c + d*x))^2, x)

________________________________________________________________________________________